Theory of control of the spin-photon interface for quantum networks.

نویسندگان

  • Wang Yao
  • Ren-Bao Liu
  • L J Sham
چکیده

A cavity coupling, a charged nanodot, and a fiber can act as a quantum interface, through which a stationary spin qubit and a flying photon qubit can be interconverted via a cavity-assisted Raman process. This Raman process can be made to generate or annihilate an arbitrarily shaped single-photon wave packet by pulse shaping the controlling laser field. This quantum interface forms the basis for many essential functions of a quantum network, including sending, receiving, transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single-photon wave packet with arbitrarily specified shape and average photon number. Numerical study of errors from noise and system parameters on the operations shows high fidelity and robust tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-fast quantum interface between a solid-state spin and a photon

Strong interactions between single spins and photons are essential for quantum networks 1 and distributed quantum computation 2. They provide the necessary interface for entanglement distribution 3,4 , non-destructive quantum measurements 5-7 , and strong photon-photon interactions 8-10. Achieving a spin-photon interface in a solid-state device could enable compact chip-integrated quantum circu...

متن کامل

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

Coherent spin control of a nanocavity-enhanced qubit in diamond.

A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy ...

متن کامل

Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide.

The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demo...

متن کامل

Application of quantum technology in radars

In this paper, the use of quantum technology in the radar system and the advantages of these radars as compared to classical radars have been analyzed. In the beginning, briefly, we present the basic structure of the theory of quantum electrodynamics, and then the role of photon in this theory and photon interactions is presented.  In the next step, the most general form of the quantum radar cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2005